现有的唱歌语音合成模型(SVS)通常在唱歌数据上进行训练,并取决于容易出错的时间对齐和持续时间功能或明确的音乐得分信息。在本文中,我们提出了Karaoker,Karaoker是一种基于多言式Tacotron的模型,该模型以语音特征为条件,该功能专门针对口语数据进行训练,而无需时间对齐。卡拉克(Karaoker)在从看不见的歌手/扬声器的源波形中提取的多维模板之后,综合了歌声和传输风格。该模型在连续数据上以单个深卷积编码为共同条件,包括音高,强度,和谐,实扣,cepstral峰值突出和八度。我们通过功能重建,分类和说话者身份识别任务扩展了文本到语音训练目标,这些任务将模型指导到准确的结果。除多任务外,我们还采用了Wasserstein GAN训练方案以及声学模型的输出的新损失,以进一步完善模型的质量。
translated by 谷歌翻译
本文介绍了对F0的音素级韵律控制的方法和多销箱文本到语音设置的持续时间,基于韵律聚类。使用自回归关注的模型,并将多个箱子架构模块并联,与韵律编码器并联。提出了对基本单扬声器方法的几种改进,从而增加了韵律控制范围和覆盖范围。更具体地说,我们采用数据增强,F0​​标准化,持续时间的平衡集群,以及扬声器无关的韵律聚类。这些修改使培训集中包含的所有发言者能够进行细粒度的音素级韵律控制,同时保持扬声器标识。该模型也可以微调到具有限制数据量的看不见的扬声器,并显示其维持其韵律控制能力,验证说话者无关的韵律聚类是有效的。实验结果验证了该模型维持了高输出语音质量,并且该方法允许在每个扬声器范围内有效的韵律控制,尽管多种式箱子设置介绍的变化。
translated by 谷歌翻译
在本文中,介绍了文本到读取/唱歌系统,可以适应任何扬声器的声音。它利用基于TacoTron的多级箱子声学模型在只读语音数据训练,并且在音素级别提供韵律控制。还研究了基于传统DSP算法的数据集增强和额外的韵律操纵。神经TTS模型对看不见的扬声器的有限录音进行了微调,允许与目标的扬声器语音进行敲击/歌唱合成。描述了系统的详细管道,其包括从Capella歌曲的目标音调和持续时间值提取,并将其转换为在合成之前的目标扬声器的有效音符范围内。还研究了通过WSOLA输出的输出的韵律操纵的另外的阶段,以便更好地匹配目标持续时间值。合成的话语可以与乐器伴奏轨道混合以产生完整的歌曲。通过主观聆听测试评估所提出的系统,以及与可用的备用系统相比,该系统还旨在从只读训练数据产生合成歌唱语音。结果表明,该拟议的方法可以产生高质量的敲击/歌声,具有增加的自然。
translated by 谷歌翻译
最近最近提出了使用音韵特征而不是音素作为输入到序列TTS的输入,用于零拍摄的多语言语音合成。这种方法对于代码切换是有用的,因为它促进了嵌入在本机的流中的外语的无缝发出。在我们的工作中,我们培训了一种语言 - 无人物多相箱模型,在不同语言中常见的一组音牙衍生特征上,其目标是实现交叉语言扬声器适应。我们首先尝试语言语音相似性对几种源语言组合的交叉语言的影响。随后,我们可以在看见或一个看不见的语言中使用非常有限的新扬声器语音数据进行微调,并实现了相同质量的合成语音,同时保留了目标扬声器的身份。随着目标扬声器数据的32和8个话语,我们获得高扬声器相似性分数和与相应文献相当的自然。在仅为2种可用的适应话语的极端情况下,我们发现我们的模型表现为几滴学习者,因为在所见和看不见的语言方案中的性能相似。
translated by 谷歌翻译
本文介绍了一个端到端的文本到语音系统,CPU延迟低,适用于实时应用。该系统由基于自回归关注的序列到序列声学模型和用于波形生成的LPCNet声码器组成。提出了一种采用塔克罗伦1和2型号的模块的声学模型架构,而通过使用最近提出的基于位置的注意机制来确保稳定性,适用于任意句子长度。在推断期间,解码器是展开的,并且以流式方式执行声学特征生成,允许与句子长度无关的几乎恒定的延迟。实验结果表明,声学模型可以产生比计算机CPU上的实时大约31倍的功能序列,移动CPU上的6.5倍,使其能够满足两个设备上实时应用所需的条件。全端到端系统可以通过听证测试来验证几乎是自然的质量语音。
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译
This paper deals with the problem of statistical and system heterogeneity in a cross-silo Federated Learning (FL) framework where there exist a limited number of Consumer Internet of Things (CIoT) devices in a smart building. We propose a novel Graph Signal Processing (GSP)-inspired aggregation rule based on graph filtering dubbed ``G-Fedfilt''. The proposed aggregator enables a structured flow of information based on the graph's topology. This behavior allows capturing the interconnection of CIoT devices and training domain-specific models. The embedded graph filter is equipped with a tunable parameter which enables a continuous trade-off between domain-agnostic and domain-specific FL. In the case of domain-agnostic, it forces G-Fedfilt to act similar to the conventional Federated Averaging (FedAvg) aggregation rule. The proposed G-Fedfilt also enables an intrinsic smooth clustering based on the graph connectivity without explicitly specified which further boosts the personalization of the models in the framework. In addition, the proposed scheme enjoys a communication-efficient time-scheduling to alleviate the system heterogeneity. This is accomplished by adaptively adjusting the amount of training data samples and sparsity of the models' gradients to reduce communication desynchronization and latency. Simulation results show that the proposed G-Fedfilt achieves up to $3.99\% $ better classification accuracy than the conventional FedAvg when concerning model personalization on the statistically heterogeneous local datasets, while it is capable of yielding up to $2.41\%$ higher accuracy than FedAvg in the case of testing the generalization of the models.
translated by 谷歌翻译
Mapping the seafloor with underwater imaging cameras is of significant importance for various applications including marine engineering, geology, geomorphology, archaeology and biology. For shallow waters, among the underwater imaging challenges, caustics i.e., the complex physical phenomena resulting from the projection of light rays being refracted by the wavy surface, is likely the most crucial one. Caustics is the main factor during underwater imaging campaigns that massively degrade image quality and affect severely any 2D mosaicking or 3D reconstruction of the seabed. In this work, we propose a novel method for correcting the radiometric effects of caustics on shallow underwater imagery. Contrary to the state-of-the-art, the developed method can handle seabed and riverbed of any anaglyph, correcting the images using real pixel information, thus, improving image matching and 3D reconstruction processes. In particular, the developed method employs deep learning architectures in order to classify image pixels to "non-caustics" and "caustics". Then, exploits the 3D geometry of the scene to achieve a pixel-wise correction, by transferring appropriate color values between the overlapping underwater images. Moreover, to fill the current gap, we have collected, annotated and structured a real-world caustic dataset, namely R-CAUSTIC, which is openly available. Overall, based on the experimental results and validation the developed methodology is quite promising in both detecting caustics and reconstructing their intensity.
translated by 谷歌翻译
360-degree panoramic videos have gained considerable attention in recent years due to the rapid development of head-mounted displays (HMDs) and panoramic cameras. One major problem in streaming panoramic videos is that panoramic videos are much larger in size compared to traditional ones. Moreover, the user devices are often in a wireless environment, with limited battery, computation power, and bandwidth. To reduce resource consumption, researchers have proposed ways to predict the users' viewports so that only part of the entire video needs to be transmitted from the server. However, the robustness of such prediction approaches has been overlooked in the literature: it is usually assumed that only a few models, pre-trained on past users' experiences, are applied for prediction to all users. We observe that those pre-trained models can perform poorly for some users because they might have drastically different behaviors from the majority, and the pre-trained models cannot capture the features in unseen videos. In this work, we propose a novel meta learning based viewport prediction paradigm to alleviate the worst prediction performance and ensure the robustness of viewport prediction. This paradigm uses two machine learning models, where the first model predicts the viewing direction, and the second model predicts the minimum video prefetch size that can include the actual viewport. We first train two meta models so that they are sensitive to new training data, and then quickly adapt them to users while they are watching the videos. Evaluation results reveal that the meta models can adapt quickly to each user, and can significantly increase the prediction accuracy, especially for the worst-performing predictions.
translated by 谷歌翻译
Background samples provide key contextual information for segmenting regions of interest (ROIs). However, they always cover a diverse set of structures, causing difficulties for the segmentation model to learn good decision boundaries with high sensitivity and precision. The issue concerns the highly heterogeneous nature of the background class, resulting in multi-modal distributions. Empirically, we find that neural networks trained with heterogeneous background struggle to map the corresponding contextual samples to compact clusters in feature space. As a result, the distribution over background logit activations may shift across the decision boundary, leading to systematic over-segmentation across different datasets and tasks. In this study, we propose context label learning (CoLab) to improve the context representations by decomposing the background class into several subclasses. Specifically, we train an auxiliary network as a task generator, along with the primary segmentation model, to automatically generate context labels that positively affect the ROI segmentation accuracy. Extensive experiments are conducted on several challenging segmentation tasks and datasets. The results demonstrate that CoLab can guide the segmentation model to map the logits of background samples away from the decision boundary, resulting in significantly improved segmentation accuracy. Code is available.
translated by 谷歌翻译